Waterborne diseases

I am still irritated by the one sided New York Times article on people who think “raw water” is better than treated water. I wrote previously about the various microorganisms and chemicals that can be found naturally in groundwater, but I wanted to expand a bit on water borne diseases and why we treat water. Not all water borne diseases are a result of microorganisms.

High nitrates in water can lead to blue-baby syndrome, more properly known as infant methemoglobinemia. Nitrates is associated with human-related water contamination, especially agriculture.

Arsenic occurs naturally in many groundwater sources. The United States Geological Survey (USGS) has mapped arsenic in groundwater based on a great deal of sampling. Arsenic in groundwater is particularly problematic in southeast Asia. Arsenic can cause cancer, cardiovascular disease, and skin lesions, among other issues.

Other naturally occurring metals and radioactive elements can be found in groundwater that can cause long term health problems. Groundwater and surface can also become contaminated from human activities with volatile organic compounds, pesticides, and other chemicals that you don’t generally want to ingest.

Then there are all the illnesses caused by microorganisms in water. According to the Centers for Disease Control and Prevention (CDC), the most common waterborne disease outbreak for 2013-2014 was Legionella, which I admit surprised me. Legionella causes respiratory illness due to inhalation of it, which is why it is normally associated with people inhaling the mist of cooling towers and air conditioning systems. [This is how it was first discovered and named when members of the American Legion got sick at a convention in Philadelphia hotel with unsterilized water in a cooling system.]

Most waterborne microorganism caused illness cause gastrointestinal illness though. Most people have heard of Giardia lamblia, which can cause diarrhea. There is Shigella which causes diarrhea, fever, and stomach cramps. E. coli is another common microorganism that can cause gastrointestinal illness found in both food and water. Cryptosporidium is a nasty microorganism that can cause illness. The reason I call it nasty though is because the parasite is protected by a shell that makes it particularly difficult to kill with disinfectants.

While luckily not a problem in the U.S., cholera, another waterborne disease, has killed many people throughout history. Yemen is currently in the midst of a horrible outbreak that has killed thousands and infected a million people. The cholera outbreak in London in 1854 is considered by most to be when the field of epidemiology started when John Snow, a physician, removed the Broad Street pump handle to show that that pump was the cause of most of the cases.

Point of all this is, be thankful for modern water treatment. There are very few waterborne illnesses in the U.S. It is rather rare for a person to get sick from water that comes from a public water supply, and when they do, most often because something has gone wrong at the water treatment plant. There are other issues of course, such as old water systems with lead in the pipes or solder. The source water can also become contaminated with something that the water treatment plant was not designed to treat. On the whole though, you are much more likely to become ill from untreated water then from treated water.

Raw Water

The New York Times ran an article about people who like to drink “raw water.” Evidently there are people who do not like tap water and like to drink unfiltered, untreated, unsterilized water. According to the article, some people like the taste. Fair enough. Most of the time when people object to the taste of tap water, what they are objecting to is the taste of chlorine or chloramines that are added to kill bacteria that can make you sick. Using a filter at the tap or simply putting the water in a container and letting it sit in the refrigerator overnight will solve the taste issue. One of the parts of this almost completely one-sided article that I find the most telling and amusing is this paragraph.

“He said “real water” should expire after a few months. His does. “It stays most fresh within one lunar cycle of delivery,” he said. “If it sits around too long, it’ll turn green. People don’t even realize that because all their water’s dead, so they never see it turn green.””

Water does not turn green unless there is something growing in it. The person quoted understands that there are microorganisms (algae most likely because it turns green) growing in the water but thinks that is good thing. There is a reason why water purveyors are required to disinfect water. Bacteria and other microorganisms can cause illness. Not all microorganisms call illness, and some can have beneficial effects (i.e. probiotics). Groundwater does normally have less microorganisms than surface water, but it is not sterile. Further, hot springs does not mean sterile. Scientists have been studying the microorganisms in hot springs like the geysers at Yellowstone National Park for years. Those microorganisms are often called extremophiles because they are so different from the “normal” microorganisms we normally find in less extreme settings.

Some people are concerned about the fluoride that is added to water to help dental health, and a person quoted in this articles believes it is a mind-control drug. Fluoride does help dental health, and it is not a mind-control drug. I really don’t even know where to go with the claim that fluoride is a mind-control drug, so I have decided not to address it right now. Also fluoride can be naturally occurring in groundwater.

However, here, I would like to address the issues with not treating or filtering water and all the other contaminants that can be in water, including but not limited to the microorganisms. The Environmental Protection Agency (EPA) sets limits on microorganisms, disinfectants, disinfectant byproducts, inorganic, organics, and radionuclides. Bottled water is regulated by the Food and Drug Administration (FDA), not the EPA, and the regulations and testing requirements are different. Tap water is tested more frequently and has more monitoring requirements.

Just because water comes from the ground does not mean that it is pure or clean. Bacteria naturally grows in groundwater. Groundwater normally has ions including metals in it, and not all of those metals are good for people. The only way to know if it is free of contaminants is to test it. The United States Geological Survey (USGS) studies and samples groundwater and surface water across the United States. I randomly pulled several reports by searching on water quality and groundwater at USGS’s website. This report of sampling from 2014 found heavy metals in almost all groundwater samples, as well as pesticides and volatile organic compounds (VOCs). “Groundwater Quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California” indicates that while the groundwater is mostly clean, a few samples had high concentrations of four elements (arsenic, barium, molybdenum, and strontium), a few samples had high radioactivity, and coliforms were detected in over 20% of wells. This report on groundwater quality in Lycoming County, Pennsylvania shows 52% of the samples exceed the EPA standard for total coliform, 12% of the wells exceeded the Maximum Contaminant Level (MCL) for arsenic, 67% exceeded the MCL for Radon-222, and a few exceeded the reporting limit for various VOCs.”Groundwater Quality in the Northern Atlantic Coastal Plain Aquifer System, Eastern United States” found fluoride, arsenic, and manganese in high concentrations in some of the samples. [Note this is naturally occurring fluoride.] Radioactive constituents were present at high levels in about 1% of the samples and at moderate levels in about 12%.

This is the reason why water treatment plants are not one size fits all. All water treatment plants have to disinfect the water. They can’t test for all microorganisms, but they test for indicator microorganisms like total coliform to determine how much disinfect is needed. They also have to test for VOCs, radionuclides, and numerous other indicators. They also test for smell and taste. Common processes at water treatment plants include flocculation and filtration to remove dissolved and suspended particles (this includes microorganisms). The source water will dictate what processes are used and the amount of treatment. The point of the treatment is to clean the water, make sure it meets the requirements set by the EPA and whatever respective state the plant is in, and prevent the people from drinking it from getting sick because of the water. The people of the United States can thank water treatment for better health. Drinking “raw water” means returning to the taking chances on acquiring an illness that people of the past were happy to do away with when water treatment plants became standard and laws like the Safe Drinking Water Act were passed. Edited to add: The EPA sets National Primary Drinking Water Regulations (NPDWR), which are legally enforceable primary standards and treatment techniques that apply to public water systems, and clicking on this embedded link will take to you a list of them along with the health problems that can occur if the water contains one of those chemicals or microorganisms above that limit.

Author’s Note: When I originally wrote this, I referred to microorganisms that live in extreme settings as xenophiles. I meant to say extremophiles. I have corrected it, and I apologize for any confusion. This is what happens when I edit my own writing. I think I had xenobiotics in my head. Xenobiotic is term generally used to describe chemicals that are foreign to body or ecosystem. In my field, I often use that term when speaking of a contaminant in the environment that needs to be cleaned up. You might find xenobiotics in raw water.

MTA’s Linden Yard

I took another fun, educational tour with the New York Transit Museum. This tour was of MTA’s Linden Yard where they rehabilitate and replace subway track and switch gear. I have been on several yard tours, and this one was very different. There were no cars being repaired. It was strictly rails. There are three types of rail areas: underground, aboveground on the surface, and aboveground on a structure (elevated). They repair and build rail differently depending on where it is.

In some areas, they can lay continuous welded rail, which speeds up replacement. They weld long lengths of rail together in the yard and then transport them to the location to be laid.

A continuous welded rail is laying on the ground in the middle next to the stacked rails

The continuous welded rail is transported in specialty rail cars that are joined together and can transport eight of these continuous welded rail.

Specialty rail car for laying continuous welded rail

Specialty rail car for laying continuous welded rail

They use thermite to weld lengths of rail together. The process is awesome to watch.

Using thermite to weld two pieces of rail together

Using thermite to weld two pieces of rail together. Molten metal is pouring out the sides.

They also rehabilitate frogs, aka rail switches.

Frog rehabilitation area

A “frog”, switching track so named because it is said to look like a frog laying down with limbs spread out

They build complete segments of rail attached to the ties. For curved sections of track, they have to rip the ties at precise angles to give the rail curve whatever angle it needs for the train to take the curve safely.

Stacked rails on ties. Note that some of the ties are cut at an angle to lay in track curves. The metal plates used to join the rail and ties have a rubber bottom to cushion the train and reduce noise.

They also build the more complicated rail junctions.

A rail switch or junction being built in the shop

Fully assembled track lifted by crane

Rubber plates used to hold rail to ties. Rubber reduces the noise of the train.

Rail being curved by mechanical force in this machine

They also repair the third rail. Third rails are not welded together but are joined using a very thick copper wire that is welded to each segment.

Copper wire being attached to two third rails with thermite

Newly attached copper wire to serve as junction between two third rails

Black Hills

I have said it before, and I will say it again, the Black Hills are gorgeous. I have posted some of my photos in their respective blog posts: Custer State Park, Wind Cave National Park, 1880 Train ride, Crazy Horse and Mt. Rushmore, and Deadwood. Here are just a few more photos that didn’t fit anywhere because they weren’t in any particular park. Of particular note are three tunnels on US 16A that were made by tunneling straight through the rock for only the small amount needed for a (single) car to go through. That in itself is an engineering feat, considering when they were built, but also they were built to frame Mt. Rushmore. It is not easy to see in the photo, but with all three, depending on the direction you are driving, you can see Mt. Rushmore, and it is really neat. Consider also the crazy route that the road had to take to get to those exact angles to frame Mt. Rushmore.

Horse Thief Lake

US 16A, the scenic drive

Black Hills

Tunnel that frames Mt. Rushmore

Tunnel that frames Mt. Rushmore

Tunnel that frames Mt. Rushmore

Black Hills

Black Hills

Minuteman Missile National Historic Site Delta-09

Previously I visited the Minuteman Missile National Historic Site Delta-01 which was the launch control center as well as where the crew lived. Yesterday, I visited the Delta-09 site, which was where an actual missile was. The missile with the nuclear warhead has been removed, but there is an unarmed missile in it now, so visitors can see what it looked like. You can walk around the surface, which is a fairly small area, but you can see some of the support infrastructure like an antenna and manholes.

Missile in silo

Missile in silo with basket for a person to do maintenance


Tracks to move cover

Missile silo is under glass room. Manholes for maintenance are on right.

Utility pole

In the photo above, you can see lines of vegetation. The entire area was mainly devoid of vegetation, but the vegetation it did have followed neat lines. I can’t figure out why, and I presume it has nothing to do with the site. I considered if the site had water pipes, perhaps if they were leaking, then vegetation might follow along the pipes, but I am fairly sure there are no water pipes. I know some plants develop root runners, but I have never seen any that are that linear. If anyone knows why plants would do this, I would love it if they would leave me a comment.

Custer State Park

I am probably prone to superlatives on my blog, but Custer State Park is, in fact, stunningly gorgeous. It has lovely grasslands where you can find bison, prairie dogs, and donkeys and probably others. Those are the ones I saw. I have to also admit that I am a little sketchy on wild donkeys being in a park, but I digress. The park also has the granite peaks and spires that make the Black Hills so famous. There is a manmade lake called Sylvan Lake that has the granite spires lining it and popping out of it. There is Needles Highway, which is an engineering feat of wonder, where you drive around the granite spires and in two cases drive through them in the most ridiculous small, just cut out the exact space needed for a car, tunnels. There is the Wildlife Loop where you can see the wildlife and just take in the gorgeous grasslands. My photos probably don’t do it justice, but if you are ever in the area, make time and go to this park.

Custer State Park grasslands

Buffalo on the grasslands

Donkeys (or burros) on the grasslands

Buffalo on the grasslands

Custer State Park

Needles Highway tunnel

Needles Highway

Sylvan Lake

Sylvan Lake

Hive DC

Every year during the summer, the National Building Museum has a summer block party. They have had the Big Maze, the Beach, and last year Icebergs. This year is Hive DC. They used nearly 3,000 wound paper tubes that are normally used for pouring concrete in construction. Unlike at any construction site I have ever seen, these tubes were painted metallic silver on the outside and hot pink on the inside. The tubes were stacked and notched to allow interlocking. In a few places at least, it was evident they needed some reinforcement with screws and nuts and some tension wires for the highest hive. There is a xylophone in a small hive which appears to be made almost exclusively with construction material like tubing, canisters, and pipes. If nothing else, Hive is fantastic to photograph. There were so many cool angles, lines, and perspectives that were just plain fun to photograph.

Hive DC

Second largest hive

Largest hive

Largest hive

Largest hive

Hive DC

Hive DC

Hive DC


Hive DC

Hive DC

Largest hive

Hive DC

Hive DC

Hive DC

Hive DC

Hive DC

DSNY Manhattan 1/2/5 Sanitation Garage

A few weeks ago, I got a chance to visit the brand new DSNY Manhattan 1/2/5 Sanitation Garage with Open House New York. The multilevel building houses three different garages, one each for Manhattan districts 1, 2, and 5. Each garage has its own floor, and there is a shared area for vehicle repairs. The building has LEED certification and includes many green features including a wonderful green roof also. Across the street is a salt shed built to resemble salt crystals. Both the garage and salt shed have really nice, innovative architecture.

DSNY Manhattan 1/2/5 Garage on left, salt shed on right, with Holland Tunnel ventilation tower in back

Salt shed

View of garage from salt shed, all floors of garage are different colors to emphasize different garages and functions

Slats in gate turned to spell DSNY

View from office area looking south, metal fins help let daylight in but keep building cool. The Statue of Liberty can barely be seen on the far right in far background.

View from garage office area of Hudson River and Holland Tunnel ventilation tower

Garage area

Shovel and broom storage (there must be a story for the front broom with the metallic confetti)

Ventilation and other mechanical structures in the repair area

Parking in the garage area

Mechanical penthouse

Green roof with Hudson River in background

Green roof

View from green roof of salt shed

Salt shed packed high with salt

DSNY Central Repair Shop

A couple of weeks ago, I got the chance to tour the Department of Sanitation of New York’s Central Repair Shop with Open House New York. The shop is huge. It several stories high and a couple of blocks long. The place is amazing, and DSNY does everything in house. The repair all vehicles there: heavy duty trucks, cars, etc. They have a woodworking shop, metal shop, sheet metal shop, upholstery shop, and all other types of shops, as well as a vehicle emissions testing facility. No, it does not smell of garbage as all vehicles are cleaned before going to the shop.

There were vehicles of all sort there. DSNY has a wide variety of garbage collection and transport vehicles. This no doubt makes it more difficult to repair as the workers have to know how to repair a multitude of different vehicles. They also repair pickup trucks, cars, and as far as I could tell, anything with wheels. I can’t say if they repair bicycles though. It won’t shock me if they did.

Parked garage trucks

Vehicles are parked everywhere but allow for traffic

Duel collection and compactor vehicles on lift

The shop also appears to be where they store most if not all, of their heavy equipment, such as equipment like snow shovels only used in winter.

Snow shovels waiting for winter

Built in road treater for winter

Impressive parallel parking both width and height wise

I don’t know what the transport vehicle below transport, but I assume garbage. I have never seen one up close, and I liked how it has a built in conveyor belt to allow for removal of its contents easily. This is one of the reason I assume this is for garbage as opposed to sand for road. The sand would get caught in between the slats of the conveyor belt.

Garbage transporter

Up close view of garbage truck to show conveyor belt to allow easier off loading

In some areas of the shop, there are similar parts sitting around. I presume some are waiting repair and others have been repaired. Most are tagged. I couldn’t identify half of them, but they were all cool looking.

Big engines for repair

Parts waiting repair/disposal/use

In one of the metal shops was this very cool, high tech, precise machine with very cool bits.

Cool machine with fun bits

Bits of some type for this cooling looking machine above

Stacks of metal pipes and bars

Sheet metal shop

Metal shop

One surprising area that the shop had was a place after my heart, an emissions testing facility. When I was there, they had a MTA bus in the testing area. MTA pays them to test some of their vehicles, but DSNY does not test private vehicles. The testing facility had a huge roller that allows testing of their large, heavy vehicles in real life conditions. There something about the contrast of this very high tech testing facility in the middle of a building that in some areas has some rather low tech repair areas that I found amusing and surprising.

MTA bus on emissions testing machine that allows for real life conditions

Piped exhaust for emissions testing

Collated emissions for analysis

Leonard P. Zakim Bunker Hill Bridge

I have this thing for bridges. I love them. However, I have a particular thing for cable-stayed bridges. They are my favorite. I love the simplicity of them. They are modern, sleek, functional, graceful, and gorgeous, all at the same time. Boston has a cable-stayed bridge right next to downtown, the Leonard P. Zakim Bunker Hill Bridge, by which I-93 crosses the Charles River. So naturally, while in Boston, I took a lot of photos of this bridge. Here are just a few.

IMG_2228 IMG_2308 IMG_2414 IMG_2424 IMG_2436 IMG_2443 IMG_2447 IMG_2454 IMG_2461