Rust

While I was photographing the ruins of the Elkins Roundhouse, I saw some rust on the big turnstile. Actually, I saw a lot of rust on everything, but the point is, I really started looking at the rust. It was beautiful. It was all variations of colors and textures. It was peeling paint cracking and folding and turning up to reveal other layers of paint, all being pushed away from the metal by the rust forming. It was rust forming on rust. It was Mother Nature laughing at the work of humans. It is one of those things where the average person would not give something the shortest glance, but I want to stop them and show them the beauty they are missing. Maybe you just have to be really detail oriented like me to see it. Maybe you have to be an engineer or scientist like me to appreciate rust. Or maybe you just have to be a crazy photographer like me to spend 15 minutes photographing rust. IMG_7772 IMG_7776 IMG_7779 IMG_7781 IMG_7783 IMG_7789 IMG_7806 IMG_7818 IMG_7828

Sentient Chamber

There is an art exhibit at the National Academy of Sciences called Sentient Chamber that is unlike anything I have seen before. It reminds me of a gigantic hairy caterpillar. It kind of looks like technology and science based items hung as a chandelier among other items I associate more wind chimes. It is interactive because as people get close and walk through it, lights turn on, sounds are made, and certain items move or vibrate. I really can’t describe, but it is beautiful and interesting to look at. It makes really cool shadows on the ceiling, walls, and on itself. It also makes some really cool reflections in itself.

Entire structure

Entire structure

Reminds me of a hairy caterpillar

Reminds me of a hairy caterpillar

More of the caterpillar

More of the caterpillar

Looking from below

Looking from below

Plastic and metal spine

Plastic and metal spine

Beakers and plastic feathers

Beakers and plastic feathers

Wonderful shadows on ceiling

Wonderful shadows on ceiling

Wonderful shadows on ceiling

Wonderful shadows on ceiling

Hanging pieces of science items include flasks, tubes, and pipets

Hanging pieces of science items include flasks, tubes, and pipets

Beautifully intricate metal spine

Beautifully intricate metal spine

Tubes and pipets

Tubes and pipets

Looking from below

Looking from below

Hanging flasks. I didn't notice the reflections until I uploaded photos to computer.

Hanging flasks. I didn’t notice the reflections until I uploaded photos to computer.

Colorful shadows

Colorful shadows

Plastic feathers and flasks reminds me of a palm

Plastic feathers and flasks reminds me of a palm

The plastic feathers and vial together look like a butterfly

The plastic feathers and vial together look like a butterfly

Plastic support symmetry

Plastic support symmetry

Communicating with Peers and the Public

I’m at a scientific conference currently. All day yesterday, I was in the same room listening to presentations on the same topic, mainly from people doing pure research, with some people doing research with more application objectives. At the end of the day, they brought several of the presenters together for a panel discussion. I had listened all day to many of the presentations, and I was growing somewhat concerned about the implications of some of the research. I support their research. I respect their research. I want to see more of their research. However I do not work in research, and where I work, communicating with the public can be very important. So I asked members of this panel a question. How are they going to explain to the public what they are doing. There is nothing unethical about what they are doing. They are doing good work that could lead to important information being revealed, but they are doing research in the real world, that quite frankly is not at this point meant for the real world. So I wanted to know, had they thought about how to explain the results of their research to the public? A member of the public who saw some of their data could become seriously confused and scared because they wouldn’t understand what the results mean.

I generally am not all that good at communicating. I am fine with public speaking if I have a script. However in public or even one on one, when speaking impromptu I many times stumble over my words. I sometimes have trouble getting all the thoughts in my brain to come out my mouth in a linear manner. I know it is a fault. I work on it. I have also been told by people that I sometimes talk at too high a technical level. I work on it.

So there I was at a scientific conference trying to ask people, many of whom I had known for a day or two, a question. I respect these people and their work. I am trying to ask a question and explain that members of the public might not understand their results. The irony is beyond rich. I, who have trouble communicating at times, who have trouble communicating at a level that others understands technical information, am trying to explain to my peers that they are doing work in a situation that members of the public can see their work, and members of the public will not understand their work.

Of course I stumble on my words. Of course I can’t explain myself clearly. And of course, these scientists I respect start getting defensive. They explain I don’t understand what they are doing. They try to explain what they are doing as if I have not already seen several presentations explaining what they are doing. One interrupts me before I can fully try to explain what I am saying. I explain I completely understand what they are doing, but members of the public won’t. I only want to know how they will explain their results to the public. I don’t want to argue with these people. I hate arguing. I just want them to understand my point of view. I stumble trying to explain. My heart starts racing so badly that I am shaking. I try to calm myself and explain differently what I am saying. A couple of people finally start to understand what I am asking. One responds “oh well, we will explain [jibberish].” I thought I had trouble communicating. No one would understand that.

A woman I have started to have a professional relationship with and have started to become friends with also was sitting next to me. Afterwards, she assured me she completely understood and had the same concern. Then several other people, who are not doing this research, came up to me and said they understood and shared my concerns. I thanked them for that. They have no idea how much I needed that. I hate arguing with people. I don’t want these researchers to think I don’t support their work. I want these people to like me, and I know we share a common goal.

I live and work by a couple of rules. I will not lie to people, and I will not put people in danger. Those are at the top of my list of rules. Telling people the truth is easier said than done when the truth involves highly complex information. It is difficult to explain what the results mean to the public when you don’t understand what the results mean. I work with some awesome people, some of whom take what I write and translate it so a normal person can understand it. I make sure it is technically accurate, and they make sure people can understand it. I understand the importance of communication. You have to tell people the truth, but you have to tell people the truth in way they can understand it. When you don’t understand what your truth means, you also have to tell people that truth.

It’s Not Rocket Science

I subscribe to my county’s weekly police report just in case there might be crime in my area I want to know about. I don’t live in a high crime area, so normally the police report is a bunch of car break-ins and drunks in the bar area of town. Today though I found this interesting report.

MISSILE INTO AN OCCUPIED DWELLING, [location of incident]. On January 18 at approximately 6:51 p.m., a resident reported a known suspect threw a brick and rock into her residence, shattering two windows. [Suspect name] was arrested and charged with missile into an occupied dwelling, destruction of property, drunk in public and violation of protection order.”

What I found interesting is that legally speaking, a brick and/or a rock is considered a missile. To me this is another reason why rocket science should not be the go to science and engineering field for things that are hard. I hate the phrase “it’s not rocket science” with a passion. Rocket science is not that hard. It involves controlled combustion and trajectory. Missiles, a term which is generally used to mean a rocket that will cause destruction, is quite frankly easy. Science fields that are hard involve things that can’t be controlled near as easy as rockets, like biological systems, like fields trying to predict what stupid humans will do, like basic science where we are still trying to understand all the forces involved. You try doing an environmental and human health risk assessment on a hazardous waste site where toxicologists are unsure what level of exposure to a contaminant is acceptable, where you can’t be completely sure what humans will really be doing and for how long at a site, where people want to know they will be not be subject to undue risk for the next 70 years, and where you can’t be absolutely, completely positive just how much of each contaminant is there, but the polluters don’t want to clean up more than necessary. Then come talk to me about how hard rocket science is.

In summary, as evidenced by this police report, missiles are easy. Rockets are easy. Stop comparing things you think are hard to rocket science.

No, I won’t #HackAHairDryer

Evidently, IBM wants to encourage women to enter science, technology, engineering, and mathematics (STEM) by telling them to hack a hair dryer. My first thought is that while I appreciate any technology company encouraging women into STEM, did they really have to pick a hair dryer? I would like to give them the benefit of the doubt that it’s a cheap piece of electronics, but let’s be real. By picking a hair dryer, they are reinforcing stereotypes about women and how we care about our looks. I initially thought I don’t even own a hair dryer, then I realized I may own two. I know there is one in my guest bathroom, left by a relative, and it sits there in case any guest wants to use it. I may have one of my own in my bathroom, bought over a decade, possibly two decades ago. I am not even sure if I still have it because it has been a decade at least since I have used it.

My second thought about #HackAHairDryer is, YOU’RE A FREAKING COMPUTER COMPANY! ENCOURAGE WOMEN TO WRITE CODE OR HACK A COMPUTER IN SOME WAY! Computer science is one of the most underrepresented fields, even among STEM fields, it is one of the worst. For goodness sakes IBM, you are a computer company, encourage women into computers. That is a field you should know rather well. Surely you can think of things women can hack in your own field, things that will not play into stereotypes.

My third thought is what age is this campaign aimed at? Hair dryers use electricity, and they produce heat. They are not exactly the safest things to hack. In IBM’s video, there are a few scenarios for “hacked” hair dryers that quite frankly worry me a bit. If a girl or women wants to hack a hair dryer, great, but I hope there is someone (man or women) around who would know when they are getting into dangerous territory.

I can MacGyver with the best of them. In truth, a whole lot of my hacking knowledge did not come from school. It came from playing with things, looking things up on the Internet, and talking with other people with experience. I don’t “hack” that much. I do have a propensity to take things apart just to look inside and see how they work, which is easy. The difficult part is getting them back together again and having the thing still work as intended.

A final thought I have is aimed at any inspiring engineer. If you don’t like to hack, if you have never hacked anything, my personal opinion is that this means nothing to your aspirations to be an engineer or scientist. Don’t let anyone tell you, you can’t be an engineer or scientist because X. I can’t remember hacking a single thing before college. I can’t remember hacking a single thing as part of my undergraduate or graduate school experience. My education did involve some hands on stuff and science labs, but it did not involve hacking. Most of engineering education is theory and reality of design. That is, first you are taught the theory as to how something should work. Then you are taught how it doesn’t always work like the theory, so here are some empirical equations with fudge factors that do work. Now throw in some safety factors. Ta la, you have your design.

So young women, hack if you want to, whatever it is you want to hack. Explore the world. Stay curious. Learn how things work. Learn ALL subjects and find the ones that interest you the most, no matter what they are.

IBM, back off the hashtags. Do something actually meaningful that will encourage women into STEM like sponsoring science fairs or building competitions or sponsoring college scholarships.

Preparing to Brief Top Boss

I’ve been working on this project at work for over a year now that seems to keep getting more and more important because of the effects of it. Recently I learned that Top Boss wants a briefing on it, and my presence is requested at the briefing. Top Boss would be the head person where I work. I work at a large place with somewhere on the order of 15,000 employees. I have become the subject matter expert on this project. Thus I need to be there because if Top Boss asks any technical questions, I will probably be the one who needs to know the answer. When I first learned that I would need to be at Top Boss’s briefing, I wasn’t nervous about it. If no technical questions are asked, I will happily sit quietly in the back as management talks. If technical questions are asked, I know my stuff. I’ll have my notes, and I feel confident I can sufficiently answer whatever might be asked. I don’t know if I should feel excited to brief Top Boss because I never thought I would end up in a meeting with Top Boss. Honestly thought it just feels like another management briefing. I am hopeful that this briefing will at least allow us to get some documents out that we have been trying to get out for a while now.

No, my first thought when learning I would need to be there was, crap, I hope I am not supposed to wear a suit for this because I don’t own a suit. I immediately looked around for a coworker who might know the dress code to brief Top Boss. The first coworker I see happens to be a straight male soil scientist, whom I called Dave. This may seem like an absurd choice, but I put Dave at the middle to high end of straight male scientist and engineer dress spectrum. Unlike some I have worked with, his clothes fit him properly and are appropriate business casual, and I have never seen him in a tie that makes you wonder if he lost a bet. However, I don’t remember ever seeing him in a tie. Dave however is kind of an appropriate choice in that Dave and I constantly seem to show up to work in similar outfits. There are two other scientists who also seems to constantly dress similar to both of us. We all show up to work in khaki pants and and a green top, or black pants and a blue top. You get the idea. We are not adventurous dressers. I wear more jewelry and other accessories than any of them though. Dave and I also shop for clothes similarly. I go to Costco, find a pair of colored denim pants, and once I determine they fit me well, I go back and buy them in several more colors. Same for tops, but those normally come from Kohl’s. I have the same short sleeve top in six colors and similar for long sleeve version and my sweaters also. My few unique pieces generally come from a thrift store or flea market. I will admit to having too many scarves and pashminas, but they are all unique, sometimes come from my travels, and keep my warm in the always cold office building.

I don’t know enough soil scientists to know if Dave is a typically dresser for a soil scientist. Geologists seem to have an unnatural obsession with Hawaiian shirts. Male engineers tend to wear neural suit pants and a white top. They then have two or three ties hanging on a hook in their office. If there is a third tie, there is a good chance it will involve Snoopy or some other cartoon. In any event, Dave assures me that office casual should be fine. However he also said he has never been in a meeting with Top Boss. I may seek a second opinion just to be sure. I will probably ask my boss. He is a good dresser. He has a science background, but he is also Italian. More importantly, I think he used to work as an advisor to upper management before, so he probably knows what is normal dress.

I’ve heard that you should dress for the job you want, not the job you have. I have the job I want. I suppose if I was really to dress for the job I want I would wear a hard hat, gloves, jeans, and a t-shirt that I don’t mind getting covered in dirt, or I might wear a lab coat, goggles, gloves, and have a pipetter on my hip. I am fairly sure these outfits will not work to brief Top Boss.

Science, the Media, Graphics, and Communication

Recently, I had my annual performance review at work, and one of the things my boss said I needed to work on was communication with upper management in the form of not realizing they don’t know what I think everyone knows. I fully admit that there are some things so engrained in me that it would never dawn on me that other people do not actually know those things. Perhaps it is a reaction to the fact that I HATE being talked down to. I hate when people attempt to explain something to me I already know. The more basic the fact the more I hate it. It feels insulting. I hope those people where I have to go back and explain at a lower level, take it as a compliment, as it kind of is. I sometimes assume they already know things, and while I will correct it when necessary, it really is a compliment that I assume someone knows something they don’t. However, I do understand what my boss was saying, and science communication is something a lot of scientists talk about a lot. How can scientists improve science communication so that non-scientists can understand science, especially since science concepts sometimes are complicated?

So in one of those striking coincidences, the same day I have my performance review, the World Health Organization (WHO) comes out with a report that says that processed meat is carcinogenic to humans. The blog post is not meant to go into a discussion of how badly this report was blown out of proportion by much of the media. I will just say there is a difference between relative risk and absolute risk. This Forbes article I think does a pretty good job of explaining what the WHO said and also what it means, and this post by Cancer Research UK is really good and has wonderful graphics explaining risk. I will also say I am not a vegetarian, and although I really don’t eat that much red meat or processed meat, I don’t have a thing about bacon, but I spent a good part of childhood in Texas, and God bless Texas barbecue, meaning brisket so tender no knife is needed, and now I am hungry. I’m sorry where was I? Oh right, WHO and processed meat. So what I did want to say a few words about was a graphic I saw on NBC Nightly News, mainly the image below (which in case it is not obvious, I literally took a photo of my television screen).

Screen shot of NBC Nightly New with Lestor Holt on 10/26/2015

Screen shot of NBC Nightly New with Lestor Holt on 10/26/2015

I am not an expert on asbestos, but I can say with confidence that a smokestack is NOT where asbestos originates. Asbestos is a naturally formed mineral, and in some locations, you can be exposed to asbestos from the natural soil and rock near you. Where people generally get asbestos exposure is old house insulation, old pipe insulation, car brake pads, and a whole lot of old building material. I posted this photo on Facebook yesterday because I was just kind of flabbergasted. It leads me to questions like does NBC News seriously not know where asbestos comes from? Are they just too lazy to find a better graphic? One Facebook friend said that maybe they used a smokestack to designate a generic industrial process. I replied that by that analogy cigarettes should also have a smokestack because they also come an industrial process. Asbestos does not originate from an industrial process. It originates from the earth, but it was then used by industry into various products. The other two graphics imply where your exposure to the named carcinogen would be. Your exposure to asbestos is not from a smokestack. It is from old building material like insulation. They could have had a graphic of fibrous pipe insulation. They could have also just had a graphic of fibers to show what asbestos looks like under a microscope. I feel confident that with a short period of time and a graphic designer, we could have come up with a factually correct and simple asbestos graphic. One may very well already exist. This reply led to a bit of a discussion between my friend and I that was partially about science communication. In short he said that because my reply was so long explaining the problems with the graphic, that he stood by his opinion that the graphic was fine. I acknowledge that my reply was long, but I was not wrong on any points. Also the NBC graphic was just plain bad. A smokestack does not in any way represent asbestos. Worse than that it provides incorrect information to an uninformed viewer who might think that a smokestack is in fact where asbestos exposure comes from.

I very much respect the points my friend made, and he did state something that gets at the heart of a problem I often have, which is brevity. [How long is this blog post now?] I have a tendency to give long answers, which I understand can be annoying to management or anyone else, who wants a short answer. The reason I sometimes give long answers is that the answer is not simple, or I need the question defined better in order to give a simple answer. I just can’t bear the idea to give an incorrect answer. I can’t bear to give a short answer to management then have someone come back and say well what about “this”, and management to come back at me and say well what about “this.” I work in complicated subjects. Very often the problems, the solutions, the questions, and the answers are all complicated. The problem with the media sometimes is they try to make a complicated subject simple and sometimes fail miserably. Sometimes they just have no clue what they are talking about and seem to refuse to want expert advice. I respect journalists who can take complicated science subjects and explain them simply. There is a difference between explaining something simply and accurately and explaining something simply and wrong. Asbestos coming out of a smokestack is simple. It is also wrong.

Being #DistractinglySexy

So here is the summary that you have probably have already heard, Tim Hunt, a Nobel laureate scientist made some very sexist remarks to of all people, a group of female scientists and engineers. He stated men and women shouldn’t work together in the same lab because when they do, you fall in love with them, they fall in love with you, and they cry when you criticize them. I think the man thinks a bit too highly of himself that any women he works with would fall in love with him.

The reaction mocking him, especially on Twitter, has kept my faith in humanity. Women have been tweeting photos of themselves working in the field and lab. Showing how distractingly sexy they are. I tweeted two photos of myself from HAZWOPER training, once in Level A PPE and one in Level B PPE.


Those tweets have proved quite popular with the Level A photo thus far getting over 1100 retweets, and the Level B getting over 360 retweets. The tweets have been featured in articles in Buzzfeed, Washington Post, Salon, and Huffington Post UK. The whole thing has been rather surreal honestly. I have been contacted my media outlets to comment. I haven’t, partially because of timing and such.

I don’t even have any photos of me really working in the lab or field that would demonstrate how real work is the complete opposite of distractingly sexy. Well, I guess everyone find different things sexy, but get real. In the first part of my career I worked as a consultant. Typical field work included environmental site assessments where I was directing drillers to get soil and groundwater samples. Gloves, steel-toed boots, jeans, and a t-shirt that was likely going to get dirt on it were my “sexy” look. Then there was the time I was helping to sample a malfunctioning aeration chamber at a wastewater treatment plant in 95°F heat. [The aeration chamber is generally the start of secondary treatment, and thus there should be little to no smell. As this was malfunctioning, try to imagine the smell of raw sewage cooking in the heat.] If you find that situation sexy, well, I don’t think I want to meet you. Then there was the time I was checking on a pilot water treatment plant. Mainly it was a whole lot of sitting around, taking notes, checking valves, and taking some samples by myself. Normally field work involves a lot of sweating really. However, there was one time I was working in the field, again getting soil samples, in New Jersey in the dead of winter. There was no sweating or falling in love. There was just me freezing my butt off and making sure the security guards were in sight. That was a fun job; it was the only time I’ve ever been in a location where safety from crime was an actual issue. Normally the safety issues are the more mundane moving parts, heat, sun, fire ants, and then the one rattlesnake. God bless Texas.

When I was a Ph.D. student, we did our field work at auto body shops measuring the exposure the painters received to a chemical in the clear coat. Basically the shops were loud and smelly with really fun chemicals, and we sat around all day collecting personal air samples, tape strips from their skin after painting, all the urine we could get, and blood at the end of the day. In the hot months, there was sweating. In the cold months, there was shivering. At what point would we be distracting each other with our sexiness? Would the latex gloves and respirators, be the cause? No doubt the painters were falling in love with me because I kept trying to get them to drink more water and begging them for more urine. After the field work was done, I spent the better part of two years or possibly more in the lab analyzing all the urine samples. I analyzed over 400 urine samples, and the analysis was a three day procedure. The first part of the analysis involved adding concentrated sulfuric acid to the urine and then heating it for four hours to 100°C. Yes, nothing says distractingly sexy like urine cooked with acid. Luckily, the lab has hoods and other ventilation methods. Oh, and I shouldn’t leave out the part of asking my lab mates for their urine at times because I used that as unexposed urine from which to make my standards. How I did not fall in love with them while they handed me cups of their own urine, is anyone’s guess.

Now, I mainly work in an office. I get into the field every once in a great while. The photos I tweeted are from training, and I have never actually worn that level of PPE for real work. However a couple of weeks ago, I got into the field, and got to help sample fish, then watch a biologist sample them. I did not in fact fall in love with the biologist when he was filleting the fish.

Sampling Fish

Recently for work I got to help out in the field taking samples to quantify environmental contamination. Some of the samples we were taking were fish tissue to measure the levels of polychlorinated biphenyls (PCB) in them. The fish live in a river that was contaminated decades ago. The sampling results will be used for fish advisories and also to determine a clean up plan.

Sampling fish starts with the really fun part, which is cruising on a small electrofishing boat. Electroshocking the fish allows you to catch them alive and throw back any fish we didn’t want. We had target fish we were trying to catch to sample, and those were the only ones we kept, and we only the number of target fish we needed. The electroshock sort of stuns the fish but doesn’t kill them. The electrofishing boat has two long poles with anode wires hanging off of them protruding from the front of the boat. There were more wires hanging from the bow of the boat, and those are the cathodes. The electricity flows from the anodes to the cathodes. We stood at the front of the boat in rubber soled boots with nets extended waiting to catch any fish stunned by the electroshocking. Netting electroshocked fish is not actually as easy as it sounds. Some of the fish are more stunned than others, so some fish seem slightly confused but then swim away. Also, some were stunned but at a depth too low or cloudy for us to catch or see. According to the boat’s captain, the water had really low conductivity, which was making it difficult. Since we had target fish we were trying to catch, I, naturally, kept catching fish we didn’t want. I threw a lot of fish back. Still, a day on a boat catching or not catching fish was a wonderful change from the cubical I normally work in. Also, I learned that you really need polarized sunglasses when out on the water.

View from the boat with the anodes out in front. Not a bad office.

View from the boat with the anodes out in front and nets at the ready. Not a bad office.

Front of boat, cathode wires hang along bow

Front of boat, cathode wires hang along bow

Anode hangs in front of the boat

Anode hangs in front of the boat

Caught fish in boat's holding tank

Caught fish in boat’s holding tank

Once we got the fish to shore, the biologist took over. The fish were weighed and their length measured. He took a a sample of their scales from a standard location, and those scales were going to be used by a laboratory to determine their age. Evidently scales can be used to age fish in the same manner tree rings age trees. WARNING: If you are uncomfortable looking at the insides of fish, do not read any further. You should probably not eat fish also, if you can’t look at an uncooked one.

Scrapping scales off fish. Scales are used to age fish.

Scrapping scales off fish. Scales are used to age fish.

The rest of the scales were then scraped off. The fish were then cut. Only the fillets were used for sampling. The part of the fish used for sampling can differ depending on what the exposure pathway being examined is. We took two different parts: the filet, which represents what a human would normally eat, and also the fillet with rib meat. The rib meat is normally not eaten, but it would have more PCBs in it, so using it in the sample would represent a worse case scenario for a human consuming fish.

Cutting fish to take the samples

Cutting fish to take the samples

Fish samples ready for lab. Left side fillet also has rib meat. Right side fillet does not.

Fish samples ready for lab. Left side fillet also has rib meat. Right side fillet does not.

Fish post fillet and rib sample

Fish post fillet and rib sample

Fish post fillet sample

Fish post fillet sample

I also learned a bit of fish anatomy during the sampling. The biologist was also sexing the fish.

Female brown bullhead fish with orange egg sack

Female brown bullhead fish with orange egg sack

Male fish

Male fish with testes/seminiferous tubules indicated

We weren’t necropsying the fish, but we still got a look inside, including sometimes as to what it had eaten recently.

Fish gastro intestine tract. Eaten food is in stomach.

Fish gastro intestine tract. Eaten food is in stomach.

We sampled quite a few fish, but it was for science and to benefit the community.

Pile of fish that have had samples taken from them

Pile of fish that have had samples taken from them

Rebecca Kamen: Fundamental Forces

Currently on display at the National Academy of Sciences is Fundamental Forces by Rebecca Kamen. Fundamental Forces is an exhibition of paintings and sculptures inspired  the process of scientific discovery. The title Fundamental Forces refers to fundamental forces in physics: gravity, electromagnetism, and strong and weak nuclear interactions, and in my opinion, the exhibit really does provide a lovely representation of those fundamental forces. I loved the wire sculptures in particular as they were visually interesting  and also looked like things I had studied in chemistry and physics class. Matter Informing Space reminds me of the Bohr model of the atom. The Doppler Effect is an interesting visualization of the Doppler effect, but it also reminds me of a vortex and the Coriolis effect. The sculptures also play with the light in wonderful ways. The shadows created by the wire sculptures and also Portal are incredibly interesting. If you are in the DC area, the exhibit is open until July 6, and it is free to see, so go.

Doppler Effect

Doppler Effect

Doppler Effect

Doppler Effect

Wave Ride for Albert

Wave Ride for Albert

Wave Ride for Albert

Wave Ride for Albert

Cosmos: For Carl

Cosmos: For Carl

Cosmos: For Carl

Cosmos: For Carl

Matter Informing Space

Matter Informing Space

Matter Informing Space

Matter Informing Space

Matter Informing Space

Matter Informing Space

Portal

Portal

Portal

Portal

Portal

Portal

Sky DIary

Sky Diary

Magic Circle of Circles

Magic Circle of Circles

Matrix 1

Matrix 1